Collaborative Intelligence
 


home | links | compass

A-PR Hypothesis

Subjectivity–Objectivity
complementarity needed for
collaborative intelligence

Subjectivity – our diverse
POVs and interpretations

Objectivity – the facts of
the world we interpret

LINKS
References

AI Conferences
Climate Collab
Darwin papers
Gapminder
Microbes–Mind Forum
MIT Center for
Collective Intelligence

Planet Innovation
Recommender Systems
SIGCHI
SIGEVO
SIGGRAPH
Vinge on Singularity

BOOKS
Paul Ehrlich Humanity on a Tightrope
Ehrlich - Humanity
on a Tightrope


Kevin Kelly What Technology Wants
Kelly – What
Technology Wants


Bert Holldobler and EO Wilson Superorganism
Superorganism

Robert Ulanowicz - A Third Window: Natural Life Beyond Newton and Darwin
Robert Ulanowicz
A Third Window


Robert Axelrod Evolution of Cooperation
Axelrod – Evolution
of Cooperation


Robert Axelrod Complexity of Cooperation
Axelrod – Complexity
of Cooperation

Paul Ehrlich Humanity on a Tightrope Kevin Kelly What Technology Wants
Hansen, Schneiderman, Smith - Analyzing Social Networks with NodeXL

Hansen, Schneiderman,
Smith – Analyzing Social
Networks - Node XL


Jerry Fodor What Darwin Got Wrong
J Fodor & M P
What Darwin Got Wrong


Eva Jablonka and Marion Lamb Evolution in Four Dimensions
E Jablonka & M Lamb
Evolution in 4D

Marc Kirschner and John Gerhart - The Plausibility of Life
M Kirschner & J Gerhart –
Plausibility of Life

J Scott Turner The Tinkerer's Accomplice
J Scott Turner
Tinkerer's Accomplice

J Scott Turner The Extended Organism
J Scott Turner
The Extended Organism

J Scott Turner The Tinkerer's Accomplice J Scott Turner The Extended Organism

Mary Jane West-Eberhard Developmental Plasticity in Evolution
MJ West-Eberhard –
Developmental
Plasticity & Evolution

J Scott Turner The Tinkerer's Accomplice J Scott Turner The Extended Organism Jerry Fodor & Massimo Piattelli-Palmarini - What Darwin Got Wrong Jerry Fodor & Massimo Piattelli-Palmarini - What Darwin Got Wrong Marc Kirschner and John Gerhart - The Plausibility of Life Eva Jablonka and Marion Lamb Evolution in Four Dimensions Mary Jane West Eberhard Developmental Plasticity and Evolution Derek Hansen, Ben Schneiderman, and Marc Smith - AnalyzIng Social Networks with Node XL Derek Hansen, Ben Schneiderman, and Marc Smith - AnalyzIng Social Networks with Node XL




Sensor networks & collaborative intelligence





 




Sensor networks are the most basic mechanical "society of mind"
— an information-gathering network where collaborative intelligence is achieved through capacity for data intgration, pattern recognition, and interpretation.


 


Sensor Networks
are of interest as a basic instance of a non-living collaborative intelligence network. Better understanding of collaborative intelligence is needed to drive innovation in a range of areas, including:

• Automated sensing activities
• Autonomous/Intelligent sensor networks to support social networks
• Autonomous/Intelligent social sensor networks
• Competing sensors or sensor networks
• Collaborating sensors and sensor networks
• Context awareness in sensor networks
• Data management in sensor networks
• Data and resource sharing in sensor networks
• Decision support systems for sensor networks
• Heterogeneous sensor networks
• Intelligent sensors and sensor networks
• Multi-service sensor networks
• New architectures and protocols for sensor networks
• New sensor network applications
• Quality of service in sensor networks
• Resource management in sensor networks
• Self-organization and self-adaptation in sensor networks
• Semantic-based management of sensor networks
• Sensor networks for autonomous/intelligent management of spatial resources
• Sensor networks for autonomous/intelligent risk management
• Sensor network control
• Sensor network maintenance
• Sensor networks for sustainable development
• Sensor networks on the web
• Sustainable sensor networks
• Virtual environment for supporting sensor networks

 

 

PAGE INCOMPLETE

 
   

Practical Applications.

 


The distant (or not so distant) future vision of a system to support collaborative intelligence will be inspired by life-like systems with autonomy and capacity for pattern recognition (the A-PR Hypothesis), enabling them to navigate. Life-like capacity for pattern recognition and choice may exhibit what Babbage alluded to as a violation, an unpredictability to which the system must be able to adapt, and intelligence to respond to random unpredictable elements, accepting and adapting usable random variations. Babbage, the computer visionary, may have seen beyond the possibilities of today’s algorithmic computing to an era of intelligent computing with the unpredictabilities of life. If so, he anticipated that collaborative intelligence will require the capacity to accept and respond to unpredictability.

 

Innovation (or Knowledge) Networks link participants, while maintaining their uniqueness and collaborative autonomy such that knowledge can evolve as networks grow, with potential for emergent, unpredictable patterns and innovative outcomes.

Problem mapping
a priori, in contrast to information visualisation after-the-fact, generates visual frameworks, or “empty constructs” to structure the process of knowledge-gathering. Problem maps can evolve into navigable user interfaces. These open frameworks (partial patterns) tap the pattern recognition capabilities of users, serving as vehicles to order incoming information in process, and for use by participants during the problem-solving process. A classic example of a problem map is Dmitri Mendeleev’s Periodic Table of Elements, which prompted chemists to look for elements that appeared logically likely to exist, based upon the pattern of the Table.

 




©2011 Zann Gill Please attribute, linking to this site.
Contact
: webmaster at collaborative-intelligence. org


Image Credit. Andrew Wunsche
Left. Random Boolean Networks

to top | home | links | compass